Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Epidemiol Infect ; 151: e82, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-20242864

ABSTRACT

This study aims to evaluate the impact of non-pharmaceutical interventions (NPIs) on the prevalence of respiratory pathogens among hospitalised children with acute respiratory infections (ARIs) in Suzhou. Children with ARIs admitted to the Children's Hospital of Soochow University between 1 September 2021 and 31 December 2022 and subjected to 13 respiratory pathogen multiplex PCR assays were included in the study. We retrospectively collected demographic details, results of respiratory pathogen panel tests, and discharge diagnostic information of the participants, and described the age and seasonal distribution of respiratory pathogens and risk factors for developing pneumonia. A total of 10,396 children <16 years of age, including 5,905 males and 4,491 females, were part of the study. The positive rates of the 11 respiratory pathogen assays were 23.3% (human rhinovirus (HRV)), 15.9% (human respiratory syncytial virus (HRSV)), 10.5% (human metapneumovirus (HMPV)), 10.3% (human parainfluenza virus (HPIV)), 8.6% (mycoplasma pneumoniae (MP)), 5.8% (Boca), 3.5% (influenza A (InfA)), 2.9% (influenza B (InfB)), 2.7% (human coronavirus (HCOV)), 2.0% (adenovirus (ADV)), and 0.5% (Ch), respectively. Bocavirus and HPIV detection peaked during the period from September to November (autumn), and MP and HMPV peaked in the months of November and December. The peak of InfA detection was found to be in summer (July and August), whereas the InfB peak was observed to be in winter (December, January, and February). HRSV and HRV predominated in the <3 years age group. HRV and HMPV were common in the 3-6 years group, whereas MP was predominant in the ≥6 years group. MP (odds ratio (OR): 70.068, 95%CI: 32.665-150.298, P < 0.01), HMPV (OR: 6.493, 95%CI: 4.802-8.780, P < 0.01), Boca (OR: 3.300, 95%CI: 2.186-4.980, P < 0.01), and HRSV (OR: 2.649, 95%CI: 2.089-3.358, P < 0.01) infections were more likely to develop into pneumonia than the other pathogens. With the use of NPIs, HRV was the most common pathogen in children with ARIs, and MP was more likely to progress to pneumonia than other pathogens.


Subject(s)
Influenza, Human , Metapneumovirus , Pneumonia , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Male , Female , Humans , Influenza, Human/epidemiology , Prevalence , Retrospective Studies , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , China/epidemiology
2.
Pediatr Infect Dis J ; 42(6): 468-472, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2318451

ABSTRACT

BACKGROUND: Kawasaki disease is characterized by high fever, rash, cervical lymphadenopathy, conjunctival injection, oral mucous membrane changes and swelling of the extremities followed by skin sloughing. Despite >50 years of study, no bacterial, viral or other infectious agent has been consistently associated with the illness. The lockdown and social distancing for COVID-19 in March 2020 led to a marked decrease in respiratory virus circulation. This provided an "experiment of nature" to determine whether Kawasaki disease would decline in parallel. METHODS: Discharge ICD-10 diagnosis codes were obtained from the Vizient Clinical Data Base for Kawasaki disease and respiratory viruses, and analyzed for the age group < 5 years. Weekly respiratory virus positivity data were also obtained from BioFire Diagnostics. RESULTS: Common enveloped respiratory viruses declined precipitously from April 2020 through March 2021 to levels at or below historical seasonal minimum levels. Kawasaki Disease declined about 40% compared with 2018-2019, which is distinctly different from the pattern seen for the enveloped respiratory viruses. Strong seasonality was seen for Kawasaki disease as far back as 2010, and correlated most closely with respiratory syncytial virus, human metapneumovirus and less so with influenza virus suggesting there is a baseline level of Kawasaki disease activity that is heightened during yearly respiratory virus activity but that remains at a certain level even in the near total absence of respiratory viruses. CONCLUSIONS: The striking decrease in enveloped respiratory viruses after lockdown and social distancing was not paralleled by a comparable decrease in Kawasaki disease incidence, suggesting a different epidemiology.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Mucocutaneous Lymph Node Syndrome , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Child, Preschool , Mucocutaneous Lymph Node Syndrome/epidemiology , COVID-19/epidemiology , Communicable Disease Control , Respiratory Tract Infections/epidemiology , Influenza, Human/epidemiology
3.
J Infect ; 87(2): 103-110, 2023 08.
Article in English | MEDLINE | ID: covidwho-2318208

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe the prevalence, genetic diversity, and evolutionary dynamics of HMPV. METHODS: Laboratory-confirmed HMPV were characterised based on partial-coding G gene sequences with MEGA.v6.0. WGS was performed with Illumina, and evolutionary analyses with Datamonkey and Nextstrain. RESULTS: HMPV prevalence was 2.5%, peaking in February-April and with an alternation in the predominance of HMPV-A and -B until the emergence of SARS-CoV-2, not circulating until summer and autumn-winter 2021, with a higher prevalence and with the almost only circulation of A2c111dup. G and SH proteins were the most variable, and 70% of F protein was under negative selection. Mutation rate of HMPV genome was 6.95 × 10-4 substitutions/site/year. CONCLUSION: HMPV showed a significant morbidity until the emergence of SARS-CoV-2 pandemic in 2020, not circulating again until summer and autumn 2021, with a higher prevalence and with almost the only circulation of A2c111dup, probably due to a more efficient immune evasion mechanism. The F protein showed a very conserved nature, supporting the need for steric shielding. The tMRCA showed a recent emergence of the A2c variants carrying duplications, supporting the importance of virological surveillance.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Humans , Infant , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Spain/epidemiology , Genotype , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Phylogeny
4.
Eur J Clin Microbiol Infect Dis ; 42(7): 873-882, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2317381

ABSTRACT

Acute respiratory infections (ARIs) are caused by a variety of microorganisms. Of all ARIs, 80% are caused by viruses such as human respiratory syncytial virus, metapneumovirus, influenza, parainfluenza, rhinovirus, and, more recently, Sars-CoV-2, which has been responsible for the COVID-19 pandemic. The objective of our study was to evaluate clinical data from a viral panel performed in children hospitalized with SARS or COVID-19 in the infirmary or ICU of 5 pediatric hospitals in the city of Goiânia, Goiás, Brazil. Demographic, clinical, and laboratory data were collected for analysis, and data on the outcomes underwent statistical treatment. A total of 128 patients were selected for the study, 54% of whom were male and 46% female. The viral panel included rhinovirus, COVID-19, metapneumovirus, adenovirus, and parainfluenza. Descriptive analyses of age profile showed differences in the involvement of particular viruses. The percentage of patients who required hospitalization in the ICU, infirmary, as well as individuals who were discharged after therapy or who died, were described. Our work shows that epidemiological surveillance measures are indispensable, especially if used in the continued analysis of viral panels in all pediatric patients with SARS.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Viruses , Child , Humans , Male , Female , Infant , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Respiratory Tract Infections/epidemiology , Paramyxoviridae Infections/epidemiology , Rhinovirus
5.
Eur Rev Med Pharmacol Sci ; 27(8): 3777-3783, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2316118

ABSTRACT

OBJECTIVE: Respiratory viral diseases are common in children. A viral diagnostic test is necessary, because COVID-19 shows signs and symptoms similar to those of common respiratory viruses. The article aims at analyzing the presence of respiratory viruses that were common before the pandemic in children who were tested for suspected COVID-19, and is also concerned with how common respiratory viruses were impacted by COVID-19 measures during the second year of pandemic. PATIENTS AND METHODS: Nasopharyngeal swabs were examined to detect the presence of respiratory viruses. The respiratory panel kit included SARS-CoV-2, influenza A and B, rhinovirus/enterovirus, parainfluenza 1, 2, 3 and 4, coronaviruses NL 63, 229E, OC43, and HKU1, human metapneumovirus A/B, human bocavirus, respiratory syncytial virus (RSV) A/B, human parechovirus, and adenovirus. Virus scans were compared during and after the restricted period. RESULTS: No virus was isolated from the 86 patients. SARS-CoV-2 was the most frequently observed virus, as expected, and rhinovirus was the second, and coronavirus OC43 was the third. Influenza viruses and RSV were not detected in the scans. CONCLUSIONS: Influenza and RSV viruses disappeared during the pandemic period and rhinovirus was the second most common virus after the CoVs during and after the restriction period. Non-pharmaceutical interventions should be established as a precaution to prevent infectious diseases even after the pandemic.


Subject(s)
COVID-19 , Enterovirus Infections , Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Tract Infections , Vaccines , Viruses , Humans , Child , Respiratory Syncytial Viruses , Influenza, Human/epidemiology , Pandemics , Respiratory Tract Infections/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Rhinovirus
6.
Emerg Infect Dis ; 29(4): 850-852, 2023 04.
Article in English | MEDLINE | ID: covidwho-2260124

ABSTRACT

We describe an unusual outbreak of respiratory infections caused by human metapneumovirus in children during the sixth wave of COVID-19 in Spain, associated with the Omicron variant. Patients in this outbreak were older than usual and showed more hypoxia and pneumonia, longer length of stay, and greater need for intensive care.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Spain/epidemiology , Pandemics , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology
7.
EBioMedicine ; 90: 104493, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2256077

ABSTRACT

BACKGROUND: In young children, rates of lower respiratory infections (LRI) and invasive pneumococcal disease (IPD) have been associated with respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (flu), and parainfluenza (PIV) (collectively termed here as pneumonia and pneumococcal disease-associated viruses [PDA-viruses]). However, their contribution to the pathogenesis of these disease endpoints has not yet been elucidated. The COVID-19 pandemic provided a unique opportunity to examine the question. METHODS: This prospective study comprised all children <5 years, living in southern Israel, during 2016 through 2021. The data were previously collected in multiple ongoing prospective surveillance programs and include: hospital visits for community-acquired alveolar pneumonia (CAAP), non-CAAP LRI; nasopharyngeal pneumococcal carriage (<3 years of age); respiratory virus activity; and nationwide, all-ages COVID-19 episodes and IPD in children <5 years. A hierarchical statistical model was developed to estimate the proportion of the different clinical endpoints attributable to each virus from monthly time series data, stratified by age and ethnicity. A separate model was fit for each endpoint, with covariates that included a linear time trend, 12-month harmonic variables to capture unexplained seasonal variations, and the proportion of tests positive for each virus in that month. FINDINGS: During 2016 through 2021, 3,204, 26,695, 257, and 619 episodes of CAAP, non-CAAP LRI, pneumococcal bacteremic pneumonia and non-pneumonia IPD, respectively, were reported. Compared to 2016-2019, broad declines in the disease endpoints were observed shortly after the pandemic surge, coincident with a complete disappearance of all PDA-viruses and continued circulation of rhinovirus (RhV) and adenovirus (AdV). From April 2021, off-season and abrupt surges of all disease endpoints occurred, associated with similar dynamics among the PDA-viruses, which re-emerged sequentially. Using our model fit to the entire 2016-2021 period, 82% (95% CI, 75-88%) of CAAP episodes in 2021 were attributable to the common respiratory viruses, as were 22%-31% of the other disease endpoints. Virus-specific contributions to CAAP were: RSV, 49% (95% CI, 43-55%); hMPV, 13% (10-17%); PIV, 11% (7-15%); flu, 7% (1-13%). RhV and AdV did not contribute. RSV was the main contributor in all endpoints, especially in infants. Pneumococcal carriage prevalence remained largely stable throughout the study. INTERPRETATION: RSV and hMPV play a critical role in the burden of CAAP and pneumococcal disease in children. Interventions targeting these viruses could have a secondary effect on the burden of disease typically attributed to bacteria. FUNDING: There was no funding for this study.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia, Viral , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Humans , Child , Child, Preschool , Streptococcus pneumoniae , Prospective Studies , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Pneumonia, Pneumococcal/epidemiology , Pneumococcal Infections/epidemiology , Adenoviridae , Rhinovirus
8.
Pediatr Infect Dis J ; 42(2): e52-e53, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2282233

ABSTRACT

The epidemiology and clinical manifestations of human metapneumovirus are not well studied in infants younger than 60 days of age. In this retrospective review of infants admitted for sepsis evaluation, we identified HMPV less frequently than other viral etiologies via nasopharyngeal multiplex polymerase chain reaction testing; in only 16 (1.9%) infants. Two infants had apneic episodes, but none had wheezing.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Sepsis , Humans , Infant , Hospitalization/statistics & numerical data , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Nasopharynx , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/diagnosis , Sepsis/epidemiology , Sepsis/etiology , Sepsis/virology , Age Factors
9.
J Med Virol ; 95(4): e28692, 2023 04.
Article in English | MEDLINE | ID: covidwho-2270425

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic and related public health intervention measures have been reported to have resulted in the reduction of infections caused by influenza viruses and other common respiratory viruses. However, the influence may be varied in areas that have different ecological, economic, and social conditions. This study investigated the changing epidemiology of 8 common respiratory pathogens, including Influenza A (IFVA), Influenza B (IFVB), Respiratory syncytial virus (HRSV), rhinovirus (RV), Human metapneumovirus Adenovirus, Human bocavirus, and Mycoplasma pneumoniae, among hospitalized children during spring and early summer in 2019-2021 in two hospitals in Hainan Island, China, in the COVID-19 pandemic era. The results revealed a significant reduction in the prevalence of IFVA and IFVB in 2020 and 2021 than in 2019, whereas the prevalence of HRSV increased, and it became the dominant viral pathogen in 2021. RV was one of the leading pathogens in the 3 year period, where no significant difference was observed. Phylogenetic analysis revealed close relationships among the circulating respiratory viruses. Large scale studies are needed to study the changing epidemiology of seasonal respiratory viruses to inform responses to future respiratory virus pandemics.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Child, Hospitalized , Seasons , Pandemics , Phylogeny , COVID-19/epidemiology , Viruses/genetics , Metapneumovirus/genetics , Respiratory Syncytial Virus, Human/genetics , China/epidemiology , Rhinovirus/genetics
10.
Lancet Microbe ; 4(5): e340-e348, 2023 05.
Article in English | MEDLINE | ID: covidwho-2252469

ABSTRACT

BACKGROUND: Respiratory disease is a major cause of morbidity and mortality; however, surveillance for circulating respiratory viruses is passive and biased. Wastewater-based epidemiology has been used to understand SARS-CoV-2, influenza A, and respiratory syncytial virus (RSV) infection rates at a community level but has not been used to investigate other respiratory viruses. We aimed to use wastewater-based epidemiology to understand community viral respiratory infection occurrence. METHODS: A retrospective wastewater-based epidemiology surveillance study was carried out at a large wastewater treatment plant located in California, USA. Using droplet digital RT-PCR, we measured RNA concentrations of influenza A and influenza B viruses, RSV A and RSV B, parainfluenza (1-4) viruses, rhinovirus, seasonal coronaviruses, and metapneumovirus in wastewater solids three times per week for 17 months (216 samples) between Feb 1, 2021, and June 21, 2022. Novel probe-based RT-PCR assays for non-influenza viral targets were developed and validated. We compared viral RNA concentrations to positivity rates for viral infections from clinical specimens submitted to California Sentinel Clinical Laboratories (sentinel laboratories) to assess concordance between the two datasets. FINDINGS: We detected RNA from all tested viruses in wastewater solids. Human rhinovirus (median concentration 4300 [0-9500] copies per gram dry weight) and seasonal human coronaviruses (35 000 [17 000-56 000]) were found at the highest concentrations. Concentrations of viral RNA correlated significantly and positively with positivity rates of associated viral diseases from sentinel laboratories (tau 0·32-0·57, p<0·0009); the only exceptions were influenza B and RSV A, which were rarely detected in wastewater solids. Measurements from wastewater indicated coronavirus OC43 dominated the seasonal human coronavirus infections whereas parainfluenza 3 dominated among parainfluenza infections during the study period. Concentrations of all tested viral RNA decreased noticeably after the omicron BA.1 surge suggesting a connection between changes in human behaviour during the surge and transmission of all respiratory viruses. INTERPRETATION: Wastewater-based epidemiology can be used to obtain information on circulation of respiratory viruses at a localised, community level without the need to test many individuals because a single sample of wastewater represents the entire contributing community. Results from wastewater can be available within 24 h of sample collection, generating real time information to inform public health responses, clinical decision making, and individual behaviour modifications. FUNDING: CDC Foundation.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Nucleic Acids , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Humans , Influenza, Human/epidemiology , Metapneumovirus/genetics , Rhinovirus/genetics , Wastewater , Seasons , Pandemics , Retrospective Studies , Respiratory Tract Infections/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Syncytial Virus, Human/genetics , Paramyxoviridae Infections/epidemiology , Virus Diseases/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Influenza B virus/genetics , RNA, Viral/genetics , RNA, Viral/analysis
11.
Viruses ; 15(2)2023 02 13.
Article in English | MEDLINE | ID: covidwho-2243301

ABSTRACT

RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.


Subject(s)
Coronavirus Infections , Coronavirus , Enterovirus Infections , Metapneumovirus , Respiratory Syncytial Virus, Human , Humans , RNA
12.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: covidwho-2066544

ABSTRACT

Non-pharmaceutical interventions (NPIs) to reduce SARS-CoV-2 transmission disrupted respiratory virus seasonality. We examined the unusual return of human metapneumovirus (hMPV) in Western Australia following a period of absence in 2020. We analysed hMPV laboratory testing data from 1 January 2017 to 31 December 2021. Whole-genome sequencing of selected hMPV-positive samples was performed using a tiled-amplicon approach. Following an absence in spring 2020, an unusual hMPV surge was observed during the wet summer season in the tropical Northern region in late 2020. Following a six-month delay, an intense winter season occurred in the subtropical/temperate Southern and Metropolitan regions. Compared to 2017-2019, hMPV incidence in 2021 increased by 3-fold, with a greater than 4-fold increase in children aged 1-4 years. There was a collapse in hMPV diversity in 2020, with the emergence of a single subtype. NPIs contributed to an absent 2020 season and a clonal hMPV resurgence. The summer surge and delayed winter season suggest that prevailing temperature and humidity are keys determinant of hMPV transmission. The increased incidence in 2021 was linked to an expanded cohort of hMPV-naïve 1-4-year-old children and waning population immunity. Further intense and unusual respiratory virus seasons are expected as COVID-19 associated NPIs are removed.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Humans , Infant , Child, Preschool , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/prevention & control , SARS-CoV-2/genetics , Western Australia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Seasons
13.
EMBO Mol Med ; 14(4): e15352, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1680151

ABSTRACT

In virology, the term seasonality describes variations in virus prevalence at more or less regular intervals throughout the year. Specifically, it has long been recognized that outbreaks of human influenza viruses, respiratory syncytial virus (RSV), and human coronaviruses occur in temperate climates during the winter season, whereas low activity is detected during the summer months. Other human respiratory viruses, such as parainfluenza viruses, human metapneumoviruses, and rhinoviruses, show highest activity during the spring or fall season in temperate regions, depending on the virus and subtype. In tropical climates, influenza viruses circulate throughout the year and no distinct seasonal patterns are observed, although virus outbreaks tend to spike during the rainy season. Overall, seasonality is more pronounced with greater distance from the equator, and tends to be less pronounced in regions closer to the equator (Li et al, 2019).


Subject(s)
Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , Viruses/genetics
14.
MMWR Morb Mortal Wkly Rep ; 71(40): 1253-1259, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2056547

ABSTRACT

The New Vaccine Surveillance Network (NVSN) is a prospective, active, population-based surveillance platform that enrolls children with acute respiratory illnesses (ARIs) at seven pediatric medical centers. ARIs are caused by respiratory viruses including influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), human parainfluenza viruses (HPIVs), and most recently SARS-CoV-2 (the virus that causes COVID-19), which result in morbidity among infants and young children (1-6). NVSN estimates the incidence of pathogen-specific pediatric ARIs and collects clinical data (e.g., underlying medical conditions and vaccination status) to assess risk factors for severe disease and calculate influenza and COVID-19 vaccine effectiveness. Current NVSN inpatient (i.e., hospital) surveillance began in 2015, expanded to emergency departments (EDs) in 2016, and to outpatient clinics in 2018. This report describes demographic characteristics of enrolled children who received care in these settings, and yearly circulation of influenza, RSV, HMPV, HPIV1-3, adenovirus, human rhinovirus and enterovirus (RV/EV),* and SARS-CoV-2 during December 2016-August 2021. Among 90,085 eligible infants, children, and adolescents (children) aged <18 years† with ARI, 51,441 (57%) were enrolled, nearly 75% of whom were aged <5 years; 43% were hospitalized. Infants aged <1 year accounted for the largest proportion (38%) of those hospitalized. The most common pathogens detected were RV/EV and RSV. Before the emergence of SARS-CoV-2, detected respiratory viruses followed previously described seasonal trends, with annual peaks of influenza and RSV in late fall and winter (7,8). After the emergence of SARS-CoV-2 and implementation of associated pandemic nonpharmaceutical interventions and community mitigation measures, many respiratory viruses circulated at lower-than-expected levels during April 2020-May 2021. Beginning in summer 2021, NVSN detected higher than anticipated enrollment of hospitalized children as well as atypical interseasonal circulation of RSV. Further analyses of NVSN data and continued surveillance are vital in highlighting risk factors for severe disease and health disparities, measuring the effectiveness of vaccines and monoclonal antibody-based prophylactics, and guiding policies to protect young children from pathogens such as SARS-CoV-2, influenza, and RSV.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Adolescent , Antibodies, Monoclonal , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Child, Preschool , Humans , Infant , Influenza, Human/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , United States/epidemiology
15.
Jpn J Infect Dis ; 75(5): 530-532, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2040399

ABSTRACT

Respiratory infections are common, and the most common causative agent is a virus. Therefore, routine surveillance of respiratory viruses is useful in the case of novel viral diseases such as coronavirus disease 2019 (COVID-19). In this study, to clarify the kind of virus involved in suspected cases of COVID-19 in the early stages of the pandemic, we attempted to detect various respiratory viruses in 613 specimens that tested negative for severe acute respiratory syndrome coronavirus 2 using reverse transcription polymerase chain reaction. As a result, viruses were detected in 59 (9.6%) patients. In addition, human rhinovirus (HRV), human metapneumovirus (HMPV), human respiratory syncytial virus, and human parechovirus were detected in 29, 25, 3, and 2 patients, respectively. Although this study was conducted over a short period of time and not all specimens were tested, these results indicate that various respiratory viruses, especially HRV and HMPV, can be detected even during the early stages of the COVID-19 pandemic. Because various respiratory viruses maintain a constant effect during the outbreak of the newly emerged pandemic, systematic surveillance of respiratory viruses is needed during the normal period to make good use for clinical and public health.


Subject(s)
COVID-19 , Metapneumovirus , Respiratory Tract Infections , Viruses , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Infant , Japan/epidemiology , Metapneumovirus/genetics , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
16.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Article in English | MEDLINE | ID: covidwho-2021974

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Pneumovirus/immunology , Antibodies, Neutralizing/pharmacology , Epitopes/immunology , Humans , Metapneumovirus/immunology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology
17.
Influenza Other Respir Viruses ; 16(6): 1133-1140, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001656

ABSTRACT

BACKGROUND: Acute respiratory infections (ARIs) result in millions of illnesses and hundreds of thousands of hospitalizations annually in the United States. The responsible viruses include influenza, parainfluenza, human metapneumovirus, coronaviruses, respiratory syncytial virus (RSV), and human rhinoviruses. This study estimated the population-based hospitalization burden of those respiratory viruses (RVs) over 4 years, from July 1, 2015 to June 30, 2019, among adults ≥18 years of age for Allegheny County (Pittsburgh), Pennsylvania. METHODS: We used population-based statewide hospital discharge data, health system electronic medical record (EMR) data for RV tests, census data, and a published method to calculate burden. RESULTS: Among 26,211 eligible RV tests, 67.6% were negative for any virus. The viruses detected were rhinovirus/enterovirus (2552; 30.1%), influenza A (2,299; 27.1%), RSV (1082; 12.7%), human metapneumovirus (832; 9.8%), parainfluenza (601; 7.1%), influenza B (565; 6.7%), non-SARS-CoV-2 coronavirus (420; 4.9% 1.5 years of data available), and adenovirus (136; 1.6%). Most tests were among female (58%) and White (71%) patients with 60% of patients ≥65 years, 24% 50-64 years, and 16% 18-49 years. The annual burden ranged from 137-174/100,000 population for rhinovirus/enterovirus; 99-182/100,000 for influenza A; and 56-81/100,000 for RSV. Among adults <65 years, rhinovirus/enterovirus hospitalization burden was higher than influenza A; whereas the reverse was true for adults ≥65 years. RV hospitalization burden increased with increasing age. CONCLUSIONS: These virus-specific ARI population-based hospital burden estimates showed significant non-influenza burden. These estimates can serve as the basis for several areas of research that are essential for setting funding priorities and guiding public health policy.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Adult , COVID-19/epidemiology , Female , Hospitalization , Humans , Infant , Influenza, Human/epidemiology , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology
18.
J Med Virol ; 94(12): 5894-5903, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1990498

ABSTRACT

A comparative analysis of confirmed cases of human influenza virus (HIFV), human respiratory syncytial virus (HRSV), and human metapneumovirus (HMPV) was conducted to describe their clinical and epidemiological characteristics. During 2009-2021, active surveillance of acute respiratory infections (ARIs) was performed in nine provinces of China. Clinical and epidemiological information and laboratory testing results of HIFV, HRSV, and HMPV were analyzed. Among 11591 ARI patients, the single-infection rates of HIFV, HRSV, and HMPV were 15.00%, 9.59%, and 2.24%, respectively; the coinfection rate of these three viruses was 0.64%. HIFV infection was mainly in adults aged 15-59 years, accounting for 39.10%. HRSV and HMPV infections were mainly in children under 5 years old, accounting for 87.13% and 83.46%, respectively. Patients with HRSV infection were younger than HMPV. HRSV and HMPV had high similarities in clinical manifestations, presenting with lower respiratory symptoms. HIFV mainly presented with an upper respiratory infection. The epidemic peak of HRSV was earlier than that of HIFV, and that of HMPV was later than those of HRSV and HFIV. A total of 85.14% of coinfection cases were children under 5 years old. Coinfection might increase the risk of pneumonia in HIFV cases. During 2020-2021, the positive rates and seasonal patterns of these three viruses changed due to the impact of the COVID-19 pandemic. Certain clinical and epidemiological features were observed in HIFV, HRSV, and HMPV infections, which could be beneficial for guiding clinical diagnosis, treatment, and prevention of these three viruses in China.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adult , Child , Child, Preschool , China/epidemiology , Coinfection/epidemiology , Humans , Infant , Influenza, Human/epidemiology , Pandemics , Respiratory Tract Infections/epidemiology
19.
Jpn J Infect Dis ; 75(6): 627-630, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-1969763

ABSTRACT

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first confirmed in Japan on January 15, 2020. The Fukuoka Institute of Health and Environmental Sciences conducted testing using polymerase chain reaction (PCR) for SARS-CoV-2 from January 31 to March 4, 2020. Samples (n = 119) were collected from 81 patients suspected of having SARS-CoV-2 infection, presenting with fever, cough, fatigue, pneumonia, and other symptoms; all the samples tested during that period were negative. To identify the pathogens responsible for these symptoms, we conducted multiplex PCR. Respiratory viruses, human metapneumovirus (hMPV) was detected in 10 patients (12%), human rhinovirus (HRV) in 3 patients (4%), and influenza B virus in 1 patient (1%). In addition, the patients who had the viruses were significantly older than those who did not. Infections with hMPV and HRV have been associated with a risk of severe illness and death among older adults. Therefore, differentiating SARS-CoV-2 from other respiratory viruses, such as hMPV and HRV, is necessary to prevent and control the spread of infection, especially in older adults.


Subject(s)
COVID-19 , Metapneumovirus , Respiratory Tract Infections , Humans , Aged , SARS-CoV-2 , COVID-19/diagnosis , Japan/epidemiology , Metapneumovirus/genetics , Influenza B virus , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
20.
J Med Virol ; 94(11): 5401-5408, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1958808

ABSTRACT

Human metapneumovirus (HMPV), which is distributed worldwide, is a significant viral respiratory pathogen responsible for causing acute respiratory tract infections (ARTIs) in children. The aim of the present study was to investigate the epidemiological and genetic characteristics of HMPV in pediatric patients in Hangzhou China following the peak of onset of coronavirus disease 2019 (COVID-19). A total of 1442 throat swabs were collected from the pediatric patients with a diagnosis of ARTI from November 2020 to March 2021. The following viruses were detected by real-time polymerase chain reaction analysis: HMPV, RSV, adenovirus, hPIV1-3, influenza A, and influenza B. A two-step method was used to amplify the F genes of the HMPV-positive samples. Following sequencing, phylogenetic analyses were conducted using the MEGA version 7 software package. Among the 1442 samples, 103 (7.14%) were positive for HMPV. No significant differences were observed in the gender distribution. The highest incidence of HMPV occurred in children older than 6 years and the lowest was noted in children younger than 6 months. Lower respiratory tract infections were diagnosed at a higher rate than upper respiratory tract infections in HMPV-infected children. Only 10 HMPV-infected children (5.41%) were inpatients compared with 93 outpatients (7.39%). Co-infection was observed in 31 HMPV-positive samples including 24 samples of double infection and seven samples of triple infection. A total of 61F gene fragments of HMPV, which were approximately 727 bp in length were successfully sequenced. All the HMPVs belonged to the genotype B and were clustered into subgenotypes B1 (1.6%, 1/61) and B2 (98.4%, 60/61). A total of four specific amino acid substitutions were noted as follows: aa280, aa296, aa392, and aa396. These substitutions were present between sequences derived from the subgenotypes B1 and B2 in the fusion open reading frame from position 244 to 429. In conclusion, the present study provided significant information regarding the epidemiological and genetic characteristics of HMPV in children living in Hangzhou. Following the first peak of the COVID-19 pandemic, HMPV was considered an important viral respiratory pathogen present in children with ARTI.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , China/epidemiology , Humans , Infant , Influenza, Human/epidemiology , Metapneumovirus/genetics , Pandemics , Paramyxoviridae Infections/epidemiology , Phylogeny , Respiratory Tract Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL